Kinetics Questions and Problems

1. For a certain reaction, E_a is 50 kJ and ΔH is -100 kJ. In the presence of a catalyst the activation energy is lowered to 30 kJ. Draw a an energy diagram for this reaction:

$$\mathsf{A}\,\rightarrow\,\mathsf{B}$$

- 2. What is the only factor that will change the value of the rate constant ?
- 3. Consider the reaction is: $2 \text{ NO}_2 \rightarrow 2 \text{ NO} + \text{O}_2$. At 600°C the decomposition of NO_2 is second order. The rate constant is $0.002 \text{ M}^{-1}\text{s}^{-1}$.
 - a) Write the rate expression:
 - b) What is the rate when $[NO_2] = 0.02 \text{ M}$?
- 5. Given: $R = k[A]^2[B]$. What effect will doubling the [A] while cutting the [B] in fourth have on the rate of reaction ? (Will the rate double, triple,.....?)
- 6. Complete the following data table for the reaction 2 A + Z \rightarrow Products, which is first order in both reactants.

	[A] (M)	[Z] (M)	k (M ⁻¹ s ⁻¹)	Rate (M/s)
experiment 1	0.45	0.30	4.0	?
experiment 2	?	0.053	0.32	0.018
experiment 3	0.75	0.80	?	0.010

Experiment 1:

Experiment 2:

Answer = _____

Experiment 3:

Answer =	
----------	--

7. Complete the following data table for the reaction $D \rightarrow Products$, which is first order.

	[D] (M)	k (s⁻¹)	Rate (M/s)
experiment 1	0.60	0.05	?
experiment 2	0.04	?	2.80
experiment 3	?	0.17	0.085

Experiment 1:

Experiment 2:

Experiment 3:

8. List the factors that affect the rate of reaction.

- 1)
- 2)
- 3)
- 4)
- 5)
- 9. Given: $2 H_2O_{2(aq)} \rightarrow 2 H_2O_{(aq)} + O_{2(g)}$. At the one minute mark of the reaction it was found bthat the rate at which $O_{2(g)}$ is being produce is 0.02 M/min.
 - a) What is the rate (at time = 1.0 minutes) at which H_2O_2 is being consumed ?
 - b) Why does the rate of reaction slow down as time goes on ?
- 10. The reaction of nitrogen monoxide, NO, with hydrogen, H_2 , is represented by this equation:

$$2 \text{ NO}(g) + 2 \text{ H}_2(g) \rightarrow N_2(g) + 2 \text{ H}_2\text{O}(g)$$

The reaction obeys this rate law: Rate = $k[NO]^2[H_2]$. If [NO] is tripled and [H₂] is doubled, how will the rate be affected? (Will it double, triple,...?) Justify your answer with a calculation.

Answer = _____

Answer = _____

Answer = _____